The search functionality is under construction.

Author Search Result

[Author] Takashi SATO(51hit)

41-51hit(51hit)

  • IDDQ Outlier Screening through Two-Phase Approach: Clustering-Based Filtering and Estimation-Based Current-Threshold Determination

    Michihiro SHINTANI  Takashi SATO  

     
    PAPER-Dependable Computing

      Vol:
    E97-D No:8
      Page(s):
    2095-2104

    We propose a novel IDDQ outlier screening flow through a two-phase approach: a clustering-based filtering and an estimation-based current-threshold determination. In the proposed flow, a clustering technique first filters out chips that have high IDDQ current. Then, in the current-threshold determination phase, device-parameters of the unfiltered chips are estimated based on measured IDDQ currents through Bayesian inference. The estimated device-parameters will further be used to determine a statistical leakage current distribution for each test pattern and to calculate a and suitable current-threshold. Numerical experiments using a virtual wafer show that our proposed technique is 14 times more accurate than the neighbor nearest residual (NNR) method and can achieve 80% of the test escape in the case of small leakage faults whose ratios of leakage fault sizes to the nominal IDDQ current are above 40%.

  • Communication Complexity of Perfect ZKIP for a Promise Problem

    Kaoru KUROSAWA  Takashi SATOH  

     
    PAPER

      Vol:
    E76-A No:1
      Page(s):
    46-49

    We define the communication complexity of a perfect zero-knowledge interactive proof (ZKIP) as the expected number of bits communicated to achieve the given error probabilities (of both the completeness and the soundness). While the round complexity of ZKIPs has been studied greatly, no progress has been made for the communication complexity of those. This paper shows a perfect ZKIP whose communication complexity is 11/12 of that of the standard perfect ZKIP for a specific class of Quadratic Residuosity.

  • Utilization of Path-Clustering in Efficient Stress-Control Gate Replacement for NBTI Mitigation

    Shumpei MORITA  Song BIAN  Michihiro SHINTANI  Masayuki HIROMOTO  Takashi SATO  

     
    PAPER

      Vol:
    E100-A No:7
      Page(s):
    1464-1472

    Replacement of highly stressed logic gates with internal node control (INC) logics is known to be an effective way to alleviate timing degradation due to NBTI. We propose a path clustering approach to accelerate finding effective replacement gates. Upon the observation that there exist paths that always become timing critical after aging, critical path candidates are clustered to select representative path in each cluster. With efficient data structure to further reduce timing calculation, INC logic optimization has first became tractable in practical time. Through the experiments using a processor, 171x speedup has been demonstrated while retaining almost the same level of mitigation gain.

  • Reliability Evaluation Environment for Exploring Design Space of Coarse-Grained Reconfigurable Architectures

    Takashi IMAGAWA  Masayuki HIROMOTO  Hiroyuki OCHI  Takashi SATO  

     
    PAPER-High-Level Synthesis and System-Level Design

      Vol:
    E93-A No:12
      Page(s):
    2524-2532

    This paper proposes a reliability evaluation environment for coarse-grained reconfigurable architectures. This environment is designed so that it can be easily extended to different target architectures and applications by automating the generation of the simulation inputs such as HDL codes for fault injection and configuration information. This automation enables us to explore a huge design space in order to efficiently analyze area/reliability trade-offs and find the best solution. This paper also shows demonstrative examples of the design space exploration of coarse-grained reconfigurable architectures using the proposed environment. Through the demonstrations, we discuss relationship between coarse-grained architectures and reliability, which has not yet been addressed in existing literatures and show the feasibility of the proposed environment.

  • Impact of Self-Heating in Wire Interconnection on Timing

    Toshiki KANAMOTO  Takaaki OKUMURA  Katsuhiro FURUKAWA  Hiroshi TAKAFUJI  Atsushi KUROKAWA  Koutaro HACHIYA  Tsuyoshi SAKATA  Masakazu TANAKA  Hidenari NAKASHIMA  Hiroo MASUDA  Takashi SATO  Masanori HASHIMOTO  

     
    BRIEF PAPER

      Vol:
    E93-C No:3
      Page(s):
    388-392

    This paper evaluates impact of self-heating in wire interconnection on signal propagation delay in an upcoming 32 nm process technology, using practical physical parameters. This paper examines a 64-bit data transmission model as one of the most heating cases. Experimental results show that the maximum wire temperature increase due to the self-heating appears in the case where the ratio of interconnect delay becomes largest compared to the driver delay. However, even in the most significant case which induces the maximum temperature rise of 11.0, the corresponding increase in the wire resistance is 1.99% and the resulting delay increase is only 1.15%, as for the assumed 32 nm process. A part of the impact reduction of wire self-heating on timing comes from the size-effect of nano-scale wires.

  • Power Distribution Network Optimization for Timing Improvement with Statistical Noise Model and Timing Analysis

    Takashi ENAMI  Takashi SATO  Masanori HASHIMOTO  

     
    PAPER-Device and Circuit Modeling and Analysis

      Vol:
    E95-A No:12
      Page(s):
    2261-2271

    We propose an optimization method for power distribution network that explicitly deals with timing. We have found and focused on the facts that decoupling capacitance (decap) does not necessarily improve gate delay depending on the switching timing within a cycle and that power wire expansion may locally degrade the voltage. To resolve the above facts, we devised an efficient sensitivity calculation of timing to decap size and power wire width for guiding optimization. The proposed method, which is based on statistical noise modeling and timing analysis, accelerates sensitivity calculation with an approximation and adjoint sensitivity analysis. Experimental results show that decap allocation based on the sensitivity analysis efficiently minimizes the worst-case circuit delay within a given decap budget. Compared to the maximum decap placement, the delay improvement due to decap increases by 3.13% even while the total amount of decaps is reduced to 40%. The wire sizing with the proposed method also efficiently reduces required wire resource necessary to attain the same circuit delay by 11.5%.

  • Hypersphere Sampling for Accelerating High-Dimension and Low-Failure Probability Circuit-Yield Analysis

    Shiho HAGIWARA  Takanori DATE  Kazuya MASU  Takashi SATO  

     
    PAPER

      Vol:
    E97-C No:4
      Page(s):
    280-288

    This paper proposes a novel and an efficient method termed hypersphere sampling to estimate the circuit yield of low-failure probability with a large number of variable sources. Importance sampling using a mean-shift Gaussian mixture distribution as an alternative distribution is used for yield estimation. Further, the proposed method is used to determine the shift locations of the Gaussian distributions. This method involves the bisection of cones whose bases are part of the hyperspheres, in order to locate probabilistically important regions of failure; the determination of these regions accelerates the convergence speed of importance sampling. Clustering of the failure samples determines the required number of Gaussian distributions. Successful static random access memory (SRAM) yield estimations of 6- to 24-dimensional problems are presented. The number of Monte Carlo trials has been reduced by 2-5 orders of magnitude as compared to conventional Monte Carlo simulation methods.

  • Bayesian Estimation of Multi-Trap RTN Parameters Using Markov Chain Monte Carlo Method

    Hiromitsu AWANO  Hiroshi TSUTSUI  Hiroyuki OCHI  Takashi SATO  

     
    PAPER-Device and Circuit Modeling and Analysis

      Vol:
    E95-A No:12
      Page(s):
    2272-2283

    Random telegraph noise (RTN) is a phenomenon that is considered to limit the reliability and performance of circuits using advanced devices. The time constants of carrier capture and emission and the associated change in the threshold voltage are important parameters commonly included in various models, but their extraction from time-domain observations has been a difficult task. In this study, we propose a statistical method for simultaneously estimating interrelated parameters: the time constants and magnitude of the threshold voltage shift. Our method is based on a graphical network representation, and the parameters are estimated using the Markov chain Monte Carlo method. Experimental application of the proposed method to synthetic and measured time-domain RTN signals was successful. The proposed method can handle interrelated parameters of multiple traps and thereby contributes to the construction of more accurate RTN models.

  • Parallel Acceleration Scheme for Monte Carlo Based SSTA Using Generalized STA Processing Element

    Hiroshi YUASA  Hiroshi TSUTSUI  Hiroyuki OCHI  Takashi SATO  

     
    PAPER

      Vol:
    E96-C No:4
      Page(s):
    473-481

    We propose a novel acceleration scheme for Monte Carlo based statistical static timing analysis (MC-SSTA). MC-SSTA, which repeatedly executes ordinary STA using a set of randomly generated gate delay samples, is widely accepted as an accuracy reference. A large number of random samples, however, should be processed to obtain accurate delay distributions, and software implementation of MC-SSTA, therefore, takes an impractically long processing time. In our approach, a generalized hardware module, the STA processing element (STA-PE), is used for the delay evaluation of a logic gate, and netlist-specific information is delivered in the form of instructions from an SRAM. Multiple STA-PEs can be implemented for parallel processing, while a larger netlist can be handled if only a larger SRAM area is available. The proposed scheme is successfully implemented on Altera's Arria II GX EP2AGX125EF35C4 device in which 26 STA-PEs and a 624-port Mersenne Twister-based random number generator run in parallel at a 116 MHz clock rate. A speedup of far more than10 is achieved compared to conventional methods including GPU implementation.

  • An Error Correction Scheme through Time Redundancy for Enhancing Persistent Soft-Error Tolerance of CGRAs

    Takashi IMAGAWA  Masayuki HIROMOTO  Hiroyuki OCHI  Takashi SATO  

     
    PAPER-Integrated Electronics

      Vol:
    E98-C No:7
      Page(s):
    741-750

    Time redundancy is sometimes an only option for enhancing circuit reliability when the circuit area is severely restricted. In this paper, a time-redundant error-correction scheme, which is particularly suitable for coarse-grained reconfigurable arrays (CGRAs), is proposed. It judges the correctness of the executions by comparing the results of two identical runs. Once a mismatch is found, the second run is terminated immediately to start the third run, under the assumption that the errors tend to persist in many applications, for selecting the correct result in the three runs. The circuit area and reliability of the proposed method is compared with a straightforward implementation of time-redundancy and a selective triple modular redundancy (TMR). A case study on a CGRA revealed that the area of the proposed method is 1% larger than that of the implementation for the selective TMR. The study also shows the proposed scheme is up to 2.6x more reliable than the full-TMR when the persistent error is predominant.

  • 2-Port Modeling Technique for Surface-Mount Passive Components Using Partial Inductance Concept

    Koh YAMANAGA  Takashi SATO  Kazuya MASU  

     
    PAPER

      Vol:
    E92-A No:4
      Page(s):
    976-982

    Electrical modeling for surface-mount passive components is proposed. In order to accurately capture parasitic inductance, the proposed 2-port model accounts for surrounding ground layer configurations of the print circuit board (PCB) on which the component is mounted. Our model retains conventional modeling paradigm in which component suppliers provide their customers with simulation models characterized independently of the customers' PCB. We also present necessary corrections that compensate magnetic coupling between the separated models. Impedance and its anti-resonant frequency of two power distribution networks are experimentally analyzed being non-separated modeling as the reference. The proposed model achieved very good match with the reference result reducing 7-34% error of the conventional model to about 2%.

41-51hit(51hit)